Monoterpene Glycoside ESK246 from Pittosporum Targets LAT3 Amino Acid Transport and Prostate Cancer Cell Growth
نویسندگان
چکیده
The L-type amino acid transporter (LAT) family consists of four members (LAT1-4) that mediate uptake of neutral amino acids including leucine. Leucine is not only important as a building block for proteins, but plays a critical role in mTORC1 signaling leading to protein translation. As such, LAT family members are commonly upregulated in cancer in order to fuel increased protein translation and cell growth. To identify potential LAT-specific inhibitors, we established a function-based high-throughput screen using a prefractionated natural product library. We identified and purified two novel monoterpene glycosides, ESK242 and ESK246, sourced from a Queensland collection of the plant Pittosporum venulosum. Using Xenopus laevis oocytes expressing individual LAT family members, we demonstrated that ESK246 preferentially inhibits leucine transport via LAT3, while ESK242 inhibits both LAT1 and LAT3. We further show in LNCaP prostate cancer cells that ESK246 is a potent (IC50 = 8.12 μM) inhibitor of leucine uptake, leading to reduced mTORC1 signaling, cell cycle protein expression and cell proliferation. Our study suggests that ESK246 is a LAT3 inhibitor that can be used to study LAT3 function and upon which new antiprostate cancer therapies may be based.
منابع مشابه
Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression.
L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function was sufficient to decrease cell growth and mTORC1 signaling in prostate cancer cells. These cells maint...
متن کاملMolecular and Cellular Pathobiology Androgen Receptor and Nutrient Signaling Pathways Coordinate the Demand for Increased Amino Acid Transport during Prostate Cancer Progression
L-Type amino acid transporters such as LAT1 and LAT3 mediate the uptake of essential amino acids. Here, we report that prostate cancer cells coordinate the expression of LAT1 and LAT3 to maintain sufficient levels of leucine needed for mTORC1 signaling and cell growth. Inhibiting LAT function was sufficient to decrease cell growth andmTORC1 signaling in prostate cancer cells. These cellsmaintai...
متن کاملAndrogen receptor and nutrient signaling pathways coordinate increased amino acid transport in prostate cancer progression
Background Solid tumors including prostate cancer activate angiogenic signals to ensure an adequate blood supply. In parallel, amino acid transporters on the cell surface are also increased so as to provide nutrients for the higher metabolic and growth demands of cancers. We are studying the L-type amino acid transporters (LAT1 and LAT3) that mediate uptake of essential amino acids including le...
متن کاملTargeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development.
BACKGROUND L-type amino acid transporters (LATs) uptake neutral amino acids including L-leucine into cells, stimulating mammalian target of rapamycin complex 1 signaling and protein synthesis. LAT1 and LAT3 are overexpressed at different stages of prostate cancer, and they are responsible for increasing nutrients and stimulating cell growth. METHODS We examined LAT3 protein expression in huma...
متن کاملL-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia.
The L-type amino acid transporter (LAT) family are Na(+)-independent transporters, which deliver neutral amino acids into cells. The four LATs, LAT1 (SLC7A5), LAT2 (SLC7A8), LAT3 (SLC43A1) and LAT4 (SLC43A2), are responsible for the majority of cellular leucine uptake. They show increased expression in many cancers, and are critical for control of protein translation and cell growth through the...
متن کامل